Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lin Yang, ${ }^{a}$ Ning-Yi Jiang, ${ }^{\text {b }}$ Xue-Hui Chen ${ }^{\text {c }}$ and Song-Lin Li ${ }^{\text {b* }}$

${ }^{\text {a }}$ Academic Affairs Office, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\text {c }}$ College of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: sllitju@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.031$
$w R$ factor $=0.072$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[diaquabis[μ-1-(carboxylatomethyl)-pyridinium-4-carboxylato- $\left.\kappa^{2} O^{1}: O^{3}\right]$ cobalt(II)]

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the $\mathrm{Co}^{\text {II }}$ ion (site symmetry $\overline{1}$) adopts a distorted octahedral coordination geometry. Neighboring metal ions are bridged by 1-(carboxyl-atomethyl)pyridinium-3-carboxylate ligands, forming a twodimensional coordination network which is stabilized by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The synthesis and characterization of coordination polymers using di- and polycarboxylate O-donor ligands such as benzene-1,4-dicarboxylate, benzene-1,2-dicarboxylate, ben-zene-1,3,5-tricarboxylate, and benzene-1,2,4,5-tetracarboxylate has attracted the attention of many laboratories (Zheng \& Sun, 2003).

(I)

In the present work, a pyridinium dicarboxylate anion, namely 1-(carboxylatomethyl)pyridinium-3-carboxylate (L), was used as a ligand to generate the title compound, (I). The L molecule comprises a betaine grouping (containing a positively charged N atom and a negatively charged carboxylate group in the same molecule) (Szafran et al., 2003; Zhang et al., 2003), which endows this ligand with zwitterionic properties as well as flexibility and conformational freedom in the molecular assembly process.

As depicted in Fig. 1, the $\mathrm{Co}^{\mathrm{II}}$ ions in (I) are each located on an inversion center. Each $\mathrm{Co}^{\mathrm{II}}$ ion is six-coordinated in a distorted octahedral geometry, surrounded by six O atoms from four different L ligands and two water molecules. The $\mathrm{Co}-\mathrm{O}$ (carboxylate) bond lengths are in the range 2.103 (1)2.110 (1) \AA, comparable with those found in monodentate carboxylate groups of other cobalt(II) dicarboxylate complexes (Choi et al., 2006; Zheng et al., 2004; Su et al., 2004). The range of cis bond angles about Co [83.77 (6)-96.23 (6) ${ }^{\circ}$] reflects the degree of distortion from an ideal octahedral

Figure 1
The asymmetric unit of (I), expanded to show the Co coordination environment (50% displacement ellipsoids and arbitrary spheres for the H atoms). [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.]

Figure 2
The two-dimensional structure of (I), viewed along the a axis.
geometry. The carboxylate $\mathrm{C}-\mathrm{O}$ bond lengths indicate delocalization of the negative charges in these groups.

The $\mathrm{Co}^{\text {II }}$ ions are linked by bridging L ligands with the synsyn monodentate coordination mode of both carboxylate groups, generating two one-dimensional chains extending along the [011] and [0 $\overline{1} 1$] directions. These one-dimensional chains are further crosslinked into two-dimensional layers lying in the (100) family of planes. Finally, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds linking water molecules to uncoordinated carboxylate O atoms complete the structure (Table 2).

Experimental

4-Carboxy-1-carboxymethylpyridinium hydroxide was synthesized according to the literature procedure of Wang et al. (2003). The sodium salt $\mathrm{Na} L$ was obtained by dissolving 4 -carboxy-1-carboxymethylpyridinium hydroxide in aqueous sodium bicarbonate, and methanol was added to precipitate out the product. Compound (I) was prepared by reaction of $\mathrm{Na} L(0.204 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.366 \mathrm{~g}, 1 \mathrm{mmol})$ in 8 ml distilled water. The resulting mixture was stirred at about 296 K for 15 min and then filtered. The filtrate was left to stand in air at room temperature for several days and pink block- and plate-shaped crystals of (I) were obtained in 85% yield. Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{CoN}_{2} \mathrm{O}_{10}$: C 42.21, H 3.54, N 6.15%; found: C 42.67, H 3.55, N 5.91%. IF-IR (KBr, $\left.\mathrm{cm}^{-1}\right): \nu(\mathrm{CO}) 1601$ ($v s$), 1377 ($v s$).

Crystal data
$\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=455.24$
Monoclinic, $P 2_{b} / c$
$a=7.5954$ (5) A
$b=16.901$ (4) A
$c=7.2755$ (5) \AA
$\beta=117.378$ (5) ${ }^{\circ}$
$V=829.32(19) \AA^{3}$

Data collection

Siemens P4 diffractometer ω scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.794, T_{\text {max }}=0.826$
2090 measured reflections
1815 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.072$
$S=1.09$
1815 reflections
134 parameters
H -atom parameters constrained
$Z=2$
$D_{x}=1.823 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.10 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Block, pink
$0.22 \times 0.22 \times 0.18 \mathrm{~mm}$

1550 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.0^{\circ}$
3 standard reflections every 120 reflections intensity decay: 3.3%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.03 P)^{2}\right. \\
& \quad+0.536 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.36 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0153 (17)

Table 1
Selected bond lengths (\AA).

Co1-O1	$2.1025(14)$	$\mathrm{C} 1-\mathrm{O} 2$	$1.249(3)$
Co1-O3			
Co1-O1 W	$2.1101(15)$	$\mathrm{C} 8-\mathrm{O} 4$	$1.244(2)$
$\mathrm{C} 1-\mathrm{O} 1$	$2.1573(14)$	$\mathrm{C} 8-\mathrm{O} 3$	$1.257(2)$
Symmetry code: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.			

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 W A \cdots \mathrm{O}^{\text {ii }}$	0.95	1.68	$2.612(2)$	167
O1 $W-\mathrm{H} 1 W B \cdots 4^{\text {iii }}$	0.95	1.84	$2.788(2)$	176

Symmetry codes: (ii) $-x+1,-y+1,-z$; (iii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

All H atoms other than those of water molecules were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The H atoms of water molecules were located in a difference map and refined as riding in their as-found relative positions, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: $X S C A N S$; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

We are indebted to the LiuHui Center for Applied Mathematics, Nankai University, People's Republic of China, for financial support (grant No. H10114).

metal-organic papers

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Choi, D. H., Yoon, J. H., Lim, J. H., Kim, H. C. \& Hong, C. S. (2006). Inorg. Chem. 45, 5947-5952.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Su, J.-R., Liu, Y. \& Xu, D.-J. (2004). Acta Cryst. E60, m1298-m1300.
Szafran, M., Kowalczyk, I., Katrusiak, A. \& Dega-Szafran, Z. (2003). J. Mol. Struct. 651-653, 621-634.
Wang, X.-B., Dacres, J. E., Yang, X., Broadus, K. M., Lis, L., Wang, L.-S. \& Kass, S. R. (2003). J. Am. Chem. Soc. 125, 296-304.
Zhang, L.-P., Song, H.-B., Wang, Q.-M. \& Mak, T. C. W. (2003). Polyhedron, 22, 811-818.
Zheng, Y.-Q. \& Sun, J. (2003). J. Solid State Chem. 172, 288-295.
Zheng, Y.-Q. \& Xie, H.-Z. (2004). J. Solid State Chem. 177, 1352-1358.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

